
Productivity Engineering in the UNIXt Environment

CFILE COPY

U) The POSTGRES Data Model
N

Wit Technical Report
00

IS. L. Graham SEP' W
(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089) r
August 7, 1984 - August 6, 1987

Arpa Order No. 4871

MfRIBUT1ON STATEMENTA&
Approved for public rele~ws i

Distribution Uunimtqd.

tUNIX is a trademark of AT&T Bell Laboratories

87 9 4 037
L~ i I', ' ' '" ' . ' '' % '-'e

-
.. -. , . .. , " -. -, % % 77%-%t

SUMN0rV CLMmuC rWor@ THIS PASS

SECURITY CLASSIFICATION OF THIS PAGE

- V - ~ <~f%% 9..~' \ ~R V -2

The POSTGRES Data Modelt

(Draft printed& March 2, 1987)

Lawrence A. Rowe
Michael R. Stonebraker

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

The design of the POSTGRES data model is described.>he data model
is a relational model that has been extended with abstract data types, data
of type procedure, and attribute and procedure inheritance. These mechan.
irs can be used to simulate a wide variety of semantic and object-oriented
data modeling constructs including aggregation and generalization, complex
objects with shared subobjects, and attributes that reference tuples in other
relations. ,

1. Introduction
/ This paper describes the data model for POSTGRES, a next.generation

extensible database management system being developed at the University
of California [StR86]. KIhe data model is based on the idea of extending the
relational model developed by Codd [Cod70] with general mechanisms that
can be used to simulate a variety of" semanctic data modeling constructs
The mechanisms include: 1) abstract data types (ADT's), 2) data of type pro-
cedure, and 3) rules. These mechanisms can be used to support complex
objects or to implement a shared object hierarchy for an object-oriented pro-
gramming language (RowB61. Most of these ideas appeared elsewhere
(Sto85,Sto86a,Sto86b,Ste].

This research was eupported by the National Science Foundation under Grant DCR- EL

PO7256 snd the Defense Advanced Reearch Pr*cts Agencq (ND). Arpe 0rde No. 4871, -

mekeieod by Space and Naval Warfare Systems Command under Contract 140003-4-C-
0069. " .

I A u

''8E-".g t C" ij /a' '" -

J-

- J .. , -.. .. .;', 5. - "V

We have discovered that some semantic constructs that were not
directly supported can be easily added to the system. Consequently, we
have made several changes to the data model and the syntax of the query
language that are documented here. The changes include providing support
for primary keys, inheritance of data and procedures, and attributes that
reference tuples in other relations.

The major contribution of this paper is to show that inheritance can be
added to a relational data model with only a modest number of changes to
the model and the implementation of the system. The conclusion that we
draw from this result is that the major concepts provided in an object-
oriented data model (e.g., inheritance, union type attributes, and support for
shared subobjects) can be cleanly and efficiently supported in an extensible
relational database management system. The features used to support these
mechanisms are abstract data types and attributes of type procedure.

The remainder of the paper describes the POSTGRES data model and is
organized as follows. Section 2 presents the data model. Section 3 describes
the attribute type system. Section 4 describes how the query language can
be extended with user-defined procedures. Section 5 compares the model
with other data models and section 6 summarizes the paper.

2. Data Model
A database is composed of a collection of relations that contain tuples

which represent real-world entities (e.g., documents and people) or relation-
ships (e.g., authorship). A relation has attributes of fixed types that
represent properties of the entities and relationships (eg., the title of a
document) and a primary key. Attribute types can be atomic (e.g., integer. f

floating point, or boolean) or structured (e.g., array or procedure). The pri-
mary key is a sequence of attributes of the relation, whose values when
taken together, uniquely identify each tuple.

A simple university database will be used to illustrate the model. The p

following command defines a relation that represents people:

create PERSON (Name = char[25], Birthdate = date,
Height = nt4, Weight = int4, StreetAddress = char[25],
City = char[25], State char[2])

This command defines a relation and creates a structure for storing the
tuples.

The definition of a relation may optionally specify a primary key and
other relations from which to inherit attributes. A primary key is a

2
.

embiuatioa .f attributes whose values together uniquely identify each
tupI 7he key is specified with a key-clause as follows:

create PERSON (...)
. key (Name)

Tuples must have a value for all key attributes. The specification of a key
may optionally include the name of an operator that is to be used when
eomparing two tuples. For example, suppose a relation had a key whose
f-j-pe was a user-defined ADT. If an attribute of type box was part of the pri.

a ay key, the comparison operator must be specified since different box
operators could be used distinguish the entries (e.g., area equals or box
equality). The following example shows the definition of a relation with a
key attribute of type box that uses area equals (Af.

create PICTURE(Title = char[25], Item = box)
key (Item using AE)

Data inheritance is specified with an inherits-clause. Suppose, for
example, that people in the university database are employees and/or

Figure 1: Person, employee, and student relation hierarchy.

3

W. Jh

students and that different attributes are to be defined for each category.
The relation for each category includes the PEOPLE attributes and other
attributes that are specific to the category. These relations can be defined
by replicating the PEOPLE attributes In each relation definition or by
Inheriting them for the definition of PEOPLE. Figure I shows the relations
and an inheritance hierarchy that could be used to share the definition of
the attributes. The commands that define the relations are shown In figure
2.

A relation inherits all attributes from its parent(s) unless an attribute
is overriden in the definition. For example, the EMPLOYEE relation
defined in figure 2 inherits the PERSON attributes Name, Birthdate,
Height, Weight, StreetAddre##, City, and State. Key specifications are also
inherited so Name is also the key for EMPLOYEE.

Relations may inherit attributes from more than one parent. For exam-
ple. STUDEMP inherits attributes from STUDENT and EMPLOYEE. An
inheritance conflict occurs when the same attribute name is inherited from

create PERSON (Name = char[25], Birthdate = date,
Height = int4, Weight - int4, StreetAddress = char[25],
City = char[25], State char[2])
key (Name)

create EMPLOYEE (Dept = char[25], Status = int2, Mgr = char[25],
JobTitle = char[25], Salary = money)
Inherits (PERSON)

create STUDENT (Sno = char[121, Status = int2, Level -char[20])
Inherits (PERSON)

create STUDEMP asWorkStudy = bool)
Inherits (STUDENT, EMPLOYEE)

Figure 2: Relation definitions.

4

more than wne parent (eg.. STUDEMP inherits Status fom, EMPLO VZE
and STUDENT). If the inherited attributes have the same type, an attri-
bute with the type is included in the relation that is being dtAipW. 'Other-
wise. the declaration is disallowed.'

The POSTORES query language is a generalized version of iRUEL
IHSW75J, called POSTQUEL. QUEL was extended in several directions.
First, FOSTQUEL has a from-clause to define tuple-vauiables rather than a
range command. Second, arbitrary relation-valued expressiozotmay-appear
any place that a relation name could appear in QUEL. Third, transitive clo-
sure and execute commands [Kueg4l have been added to the language.
And lastly, POSTORES maintains historical data so POSTQUEL ilows
queries to be run on past database states or on any data that was in the
database at any time. These extensions are described in the remainder of
this section.

The from-clause was added to the language so that tuple-varlable
definitions for a query could be easily determined at compile-time. This
capability was needed because POSTGRES will, at the user's request, dorn-
pile queries and save them in the catalogs. The from-clause is illustrated
in the following query that lists all work-study students who are sopho-
Mores:

retrieve (SEname)
from SE In STUDEMP
where SE lsWorkStudy

and SE.Status = "sophomore

The fromn-clause specifies the set of tuples over which a tuple-variable will
range. In this example, the tuple-variable SE ranges over the aet of student
employees.

A default tuple-veriable with the same name is defined for each rela-
tion referenced in the target-list or where-clause of a query. For example,
the query above could have been written:

Nost attribute Inbenlanue models have a enifict resolution rle that sct we of
the mlictlag attributes. We ebose to disallow inheritance because we could sot discoer
as example where it made sense, excpt, when the types wern identical On the ether hand,
Prooedure inbeulasce (diacusnd below) does use a emlict resolution role because many s-
@mPlss exist in wbich me procedure is pnfed.

retrieve (STUDEMPname)
where STUDEMPIsWrkStudy

and STUDEMP~tatus = "sophomore
Notice th.t the attribute hWorkStucy is a boolean-valued attribute so it

does not require an explicit value test (e.g., STUDEMPJsWorkStudy -

The set of tuples that a tuple-variable may range over can be a named
relation or a relation-expression. For example, suppose the user wanted to
retrieve all people In the database who live in Berkeley regardless of
whether they were students, employees, student employees, or people. This
query can be written as follows:

retrieve (P~name)
from P In PEOPLE*
where P.city = 'Berkeley"

The "*" operator specifies the relation formed by taking the union of the
relations PEOPLE, EMPLOYEE, STUDENT, EMPLOYEE, and STU-
DEMP. Relation expressions may include other set operators: union (U),
intersection (n), and difference (-). For example, the following query
retrieves the names of people who are students or employees but not student
employees:

retrieve (Pname)
from P in (STUDENT U EMPLOYEE)

POSTQUEL also provides set comparison operators and a relation-
constructor that can be used to specify some difficult queries more easily
than in a conventional query language. For example, suppose that students
could have several majors. The natural representation for this data is to
define a separate relation:

create MAJORS(Sname = char[25], Mname = charI25])

where Sname is the student's name and Mname is the major. With this
representation, the following query retrieves the names of students with the
same majors as Smith:

retrieve (MiSname)
from M1 in MAJORS
where ((.Mname) from z In MAJORS where xSname = MISname)

C ((x.Mname) from x In MAJORS where x.Sname="SmIth*)
The expressions enclosed in set symbols ("I...1") are relation-constructors.

6

The general form of a relation-constructor's is
{(target-list) from from-clause where-claus)

which specifies the same relation as the query

retrieve (target-list)
from from-clause
where where-clause

Note that a tuple-variable defined in the outer query (e.g., M1 in the query
above) can be used within a relation-constructor but that a tuple-variable
defined in the relation-constructor cannot be used in the outer query.
Redefinition of a tuple-variable in a relation constructor creates a distinct
variable as in a block-structured programming language (e.g., PASCAL).
Relation-valued expressions (including attributes of type procedure
described in the next section) can be used any place in a query that a named
relation can be used.

Database updates are specified with conventional update commands as
shown in the following examples:

P" Add a new employee to the database. 'I
append to EMPLOYEE(name = value, age = value, ...)

/ Change state codes using MAP(O)dCode, NewCode). 'I
replace P(State = MAP.NewCode)
from P in PERSON*
where P.State = MAP.OldCode

/ Delete students born before today. e/
delete STUDENT
where STUDENT.Birthdate > todayO)

Deferred update semantics are used for all updates commands.

POSTQUEL supports the transitive closure commands developed in
QUEL' [KueB4J. A "0" command continues to execute until no tuples are
retrieved (e.g., retrieve') or updated (e.g., append*, delete', or replace').
For example, the following query creates a relation that contains all

1 Relaton eoustructon are really aggregate functions. We have designed a mechansim
to support extensible aggregate functions, but have not yet worked out the query language
syntax and semantics.

7

employees who work for Smith:

retrieve* into SUBORDINATES(E.Name, E~dgr)
from E in EMPLOYEE, S In SUBORDINATES
where E.Name = "Smith" or E.Mgr = S.ame

This command continues to execute the retrieve-into command until there
ae no changes made to the SUBORDINATES relation.

Lastly, POSTGRES never deletes or updates data in a relation so that
queries can be executed on historical data. For example, the following
query looks for students who lived in Berkeley on August 1, 1980:

retrieve (S.Name)
from S In STUDENT["August 1, 1980"]
where S.City = "Berkeley"

The date specified in the brackets following the relation name specifies the
relation at the designated time. The date can be specified in many different
formats and optionally may include a time of day.

Queries can also be executed on all data that is currently in the rela-
tion or was in it at some time in the past (i.e., all data). The following
query retrieves all students who ever lived in Berkeley:

retrieve (S.Name)
from S in STUDENT]
where S.City = "Berkeley"

The notation "[1" can be appended to any relation name. The DBMS saves
all data unless requested not to by the user. Data can be purged explicitly
(e.g., "purge data before a given date") or implicitly (e.g., "purge data over I
year old"). -

The query above only examines students who were not student employ.
ees. To search the set of all students, the from-clause would be

.. from S in STUDENTUL]...

Queries can also be specified on data that was in the relation during a
given time period.

The time period is specified by giving a start and end time as shown in
the following query that retrieves students who lived in Berkeley at any
time in August 1980.

Pq

-8.,, ' ,; :'..., '.- -.-. ,, ,,,, ,". - ,.

e -C

retrieve (S.Name)
from S In STUDENT[rAugust 1, 1980",*August 31, 190")
where S.City = "Berkeley"

Shorthand notations are supported for all tuples in a relation up to some
date (e.g., STJDENT',"August 1, 19807) or from some date to the present
(e.g., STUDENT*r"Augist 1. 1980")).

Finally, every relation has implicitly defined attributes that represent
the time a tuple was appended to the relation (TMIN) and the time it was
deleted or replaced (TMAX). These attributes and operators on the date
data type can be used to find the names of students who lived in Berkeley
less than 30 days:

retrieve (S.Name) -

from S in STUDENT[1
where S.City = "Berkeley"

and date(S.TMAX - S.TMIN) < "30 days"

The predefined date function takes a value of the type used to represent
time internally in the system and converts it to a date data type.

POSTGRES also supports versions of relations. A version can be
created from a relation or a snapshot. A version is created by specifying the
base relation as shown in the command

create version MYPEOPLE from PEOPLE

which creates a version, named MYPEOPLE, that is derived from the PEO-
PLE relation. Data can be retrieved from and updated in a version just like
a relation. Updates to a version do not modify the underlying relation but
updates to the underl3ing relation are visIbe through the version unless the
value has been modified in the version. For example, if George's birthdate
is changed in MYPEOPLE, a replace command that changes his birthdate
in PEOPLE will not be visible in MYPEOPLE.

If the user does not want updates to the base relation to propagate to
the version., he can create a version of a snapshot. For example, the follow-
ing command creates a version of PEOPLE that is derived from the current
contents of the relation:

create version YOURPEOPLE from PEOPLE[nowo)

The procedure now returns the current date and time.

A merge command is provided that will merge the changes made in a
version back into the underlying relation. An example of this command is

9

merge YOURPEOPLE Into PEOPLE
that will merge the changes made to YOURPEOPLE back into PEOPLE.
The merge command uses a semi-automatic procedure to resolve updates to
the underlying relation and the version that conflict [GaeS4].

This section described most of the data definition and data manipula-
tion commands in POSTQUEL. The commands that were not described are
the commands for defining rules, utility commands that only affect the per-
formance of the system (e.g., define Index and modify), and other miscel-
laneous utility commands (e.g., destroy and copy). The next section
describes the type system for relation attributes.

3. Data Types
POSTGRES provides a collection of atomic and structured types. The

predefined atomic types include: nt2, int4, float4, float8, bool, char, and
date. The standard arithmetic and comparison operators are provided for
the numeric and date data types and the standard string and comparison
operators for character arrays. Users can extend the system by adding new
atomic types using an abstract data type (ADT) definition facility.

All atomic data types are defined to the system as ADT's. An ADT is
defined by specifying the type name, the length of the internal representa-
tion in bytes, procedures for converting from an external to internal
representation for a value and from an internal to external representation,
and a default value. The command

define type int4 Is
(InternalLength = 4, InputProc = CharTolnt4,
OutputProc = lnt4ToChar, Default = "Or)

defines the type int4 which is predefined in the system. CharTo[nt4 and
In*4ToChar are procedures that are coded in a conventional programming
langauge (e.g., C) and defined to the system using the commands described
in section 4.

Operators on ADT's are defined by specifying the the number and type
of operands, the return type, the precedence and associativity of the opera-
tar, and the procedure that implements it. For example, the command

define operator "+"(int4, int4) returns int4 Is
(Proc = Plus, Precedence = S, Associativity = "loft')

defines the plus operator. Precedence is specified by a number. Larger
numbers imply higher precedence. The predefined operators have the pre-
cedences shown in figure 3. These precedences can be changed by changing
the operator definitions. Associativity is either left or right depending on
the semantics desired. This example defined an operator denoted by a sym-
bol (i.e., 9+w). Operators can also be denoted by identifiers as shown below.

Precedence Operators
S t

7 not - (unury)

6 *1

5 + -(biy) _

4 >a

2 and
1 or

Figure 3: Precedence of predefined operators.

Another example of an ADT definition is the following command that
defines an ADT that represents boxes:

define type box Is
(InternalLength = 16, InputProc = CharToBox,
OutputProc = BoxToChar, Default em,)

The external representation of a box is a character string that contains two
points that represent the upper-left and lower-right corners of the box.
With this representation, the constant

"20,0.10,70"

describes a box whose upper-left corner is at (20, 50) and lower-right corner
i at (10, 70). CharToBoz takes a character string like this one and returns
a 16 byte representation of a box (e.g., 4 bytes per x- or y-coordinate value).
BoxToChar is the inverse of CharToBox

Comparison operators can be defined on ADT's that can be used in
access methods or optimized in queries. For example, the definition

%1

define operator AE(boz. box) returns bool I
(Proc = BoxAE, Precedence = 3, Associativity m "Ieft",
Sort = BoxArea, Hashes, Restrict = AERSelectivity,
Join AEJSelectivity, Negator = BoxAreaNE)

defines an 6perator "area equals" on boxes. In addition to the semantic
Information about the operator itself, this specification includes information
needed to build indexes and to optimize queries using the operator. For
example, suppose the PICTURE relation was defined by

create PICTURE(Title = charD], Item = box)

and the query
retrieve (PICTUREall)
where PICTURE.Item AE "50,100:100,50"

was being processed. The Sort attribute of the operator specifies the pro.
cedure to be used if a merge-sort join strategy was selected to implement the
query. It also specifies the procedure to use when building an ordered index
(e.g., B-Tree) on a box attribute in a relation. The Hashes attribute indi-
cates that this operator can be used to build a hash index on a box attribute
in a relation. Note that either type of index can be used to optimize the
query above. The Restrict and Join attributes specify the procedure that is
to be called by the query optimizer to compute the restrict and join selectivi-
ties, respectively, of a clause involving the operator. These selectivity attri-
butes identify procedures to be called that will return a floating point value
between 0.0 and 1.0 that specify the selectivity given the operator. Lastly,
the Negator attribute specifies the procedure that is to be used to compare
two values when a query predicate requires the operator to be negated as in

retrieve (PICTURE.ait)
where not (PICTUREltem AE "50,100:100,50")

The define operator command also may specify a procedure that can be
used if the query predicate includes an operator that is not commutative.
For example, the commutator procedure for "area less than" (ALT) is the
procedure that implements "area greater than or equal" (AGE). More
details on the use of these attributes is given elsewhere [Sto86a].

Type-constructors are provided to define structured types (eg., arrays
and procedures) that can be used to represent complex data. An arroy type-
constructor can be used to define a variable- or fixed.size array. A fixed-size
array is declared by specifying the element type and upper bound of the
array as illustrated by

12
4.

e

create PERSON(Name charI25D

which defines an array of twenty-five characters. The elements of the army
ar. referenced by indexing the attribute by an integer between I and 25
(0.. "PERSON.Namet4T references the fourth character in the person's
same).

A variable-size array Is specified by omitting the upper bound in the
type constructor. For example, a variable-sized array of characters is
specified by *charfl." Variable-size arrays are referenced by indexing the
attribute by an integer between I and the current upper bound of the array.
The predefined function size returns the current upper bound. POSTGRES
does not impose a limit on the size of a variable-size array. Built-in fuac-
tions are provided to append arrays and to fetch array slices. For example,
two character arrays can be appended using the concatenate operator ('+*)
and an array slice containing characters 2 through 15 in an attribute named
x can be fetched by the expression "x[2:15].

The second type-constructor allows values of type procedure to be stored
in an attribute. Procedure values are represented by a sequence of POST-
QUEL commands. The value of an attribute of type procedure is a relation
because that is what a retrieve command returns. Moreover, the value
may include tuples from different relations (i.e., of different types) because a
procedure composed of two retrieve commands returns the union of both
commands. We call a relation with different tuple types a multirelation.
The POSTGRES programming language interface provides a cursor-like
mechanism, called a portal, to fetch values from multirelations [StR86].
However, they are not stored by the system (i.e., only relations are stored).

The system provides two kinds of procedure type-constructors: variab!e
and parameterized. A variable procedure-type allows a different POST-
QUEL procedure to be stored in each tuple while parameterized procedure-
types store the same procedure in each tuple but with different parameters.
We will illustrate the use of a variable procedure-type by showing another
way to represent student majors. Suppose a DEPARTMENT relation was
defined with the following command:

create DEPARTMENT(Name a char[251, Chair u char(25L -)
A student's major(s) can then be represented by a procedure in the STU-
DENT relation that retrieves the appropriate DEPARTMENT tuple(s). The
Mqjors attribute would be declared as follows:

create STUDENT(..., Majors = postquel, ...)

Data type postquel represents a procedure-type. The value in Majors will be

13

- ' ' . - . .-, , ?

a query that fetchs the department relation tuples that represent the
student's minor. The following command appends a student to the data.
base who has a double major in mathematics and computer science

append STUDENT(Name = "Smith,
Majors W "retrieve (D.82)

from D In DEPARTMENT
where D.Name = "Mathematics'

or D.Name = "Computer Science")

A query that references the Majors attribute returns the string that
contains the POSTQUEL commands. However, two notations are provided
that will execute the query and return the result rather than the definition.
First, nested-dot notation implicitly executes the query as illustrated by

retrieve (S.Name, S.Majors.Name)
from S In STUDENT

which prints a list of names and majors of students. The result of the query
in Mqjorv is implicitly joined with the tuple specified by the rest of the
target-list. In other words, if a student has two majors, this query will
return two tuples with the Name attribute repeated. The implicit join is
performed to guarantee that a relation is returned.

The second way to execute the query is to use the execute command.
For example, the query

execute (SMajors)
from S in STUDENT
where SName - "Smith"

returns a relation that contains DEPARTMENT tuples for all of Smith's
majors.

Parameterized procedure-types are used when the query to be stored in
an attribute is nearly the same for every tuple. The query parameters can
be taken from other attributes in the tuple or they may be explicitly
specified. For example, suppose an attribute in STUDENT was to represent
the student's current class list. Given the following definition for enroll.
menta

create ENROLLMENT(Studnt = cha[25], Class = char(25D

Bill's class list can be retrieved by the query

14

retrieve (ClasName E.Class)
from E In ENROLLMENT
where EStudent = "Bill"

This query will be the same for every student except for the constant that
specifiss the student's name.

A parameterized procedure-type could be defined to represent this query
as WolOWS:

retrieve (ClassName - E.Class)

from E in ENROLLMENT I
where E.Student = $-Name

end
The dollar-sign symbol ("W') refers to the tuple in which the query is stored
(i.e. the current tuple). The parameter for each instance of this type (i.e., a
query) is the Name attribute in the tuple in which the instance is stored.
This type is then used in the create command as follows

create STUDENT(Name = char[251, .., ClassList = classes)

to define an attribute that represents the student's current class list. This
attribute can be used in a query to return a list of students and the classes
they are taking.

retrieve (S.Name, S.ClassList.ClassName)
Notice that for a particular STUDENT tuple, the expression "$.Name" in
the query refers to the name of that student. The symbol "$" can be
thought of as a tuple-variable bound to the current tuple.

Parameterized procedure-types are extremely useful types, but some-
times it is inconvenient to store the parameters explicitly as attributes in
the relation. Consequently, a notation is provided that allows the parame-
ters to be stored in the procedure-type value. This mechanism can be used
to simulate attribute types that reference tuples in other relations. For
example, suppose you wanted a type that referenced a tuple in the
DEPARTMENT relation defined above. This type can be defined as follows:

define type DEPARTMENhT(int4) Is
retrieve (DEPARTMENT.lil)
where DEPARTMENT.oid = $1

end
Th.relation- ame can be used for the type name because relations, types,
and procedures have separate name spaces. The query in type

15
- p

,

_~~~~V * . ' , , ,-...,-.: . .. ,,. . .,

",,- .l~ L| ..- c~ J* L ..-- -

DEPARTMENT will retrieve a specific department tuple given a unique
bjc identifier (oid) of the tuple. Each relation has an implicitly defined

attribute named .id that contains the tuple's unique identifier. The odd
attribute can be accessed but not updated by user queries. Oid values are
created and maintained by the POSTGRES storage system [Sto8TJ. The for-
mal argument to this procedure-type is the type of an object identifier. The
parameter is referenced inside the definition by "$n* where n is the parame-
tor number.

An actual argument is supplied when a value Is assigned to an attri-
bute of type DEPARTMENT. For example, a COURSE relation can be
defined that represents information about a specific course including the
department that offers it. The create command is:

create COURSE(Title = char[251, Dept = DEPARTMENT, ...)

The attribute Dept represents the department that offers the course. The
following query adds a course to the database:

append COURSE(Title = "Introductory Programming",
Dept = DEPARTMENT(D.oid))

from D in DEPARTMENT
where D.Name = "computer science

The procedure DEPARTMENT called in the target-list is implicitly defined
by the "define type" command. It constructs a value of the specified type
given actual arguments that are type compatible with the formal argu-
ments, in this case an nt4.

Parameterized procedure-types that represent references to tuples in a
specific relation are so commonly used that we plan to provide automatic
support for them. First. every relation created will have a type that
represents a reference to a tuple implicitly defined similar to the DEPART.
MENT type above. And second, it will be possible to assign a tuple-variable
directly to a tuple reference attribute. In other words, the assignment to
the attribute Dept that is written in the query above as

.. Dept = DEPARTMENT(D.oid)

can be written as

D Dept = D...

Parameterised procedure-types can also be used to implement a type
that references a tuple in an arbitrary relation. The type definition is:

* f~~~''V'i" ~ ~' ~ *. . .-. *

define type tuple(charl, int4) h
retrieve ($1.11)
where $1Wd = $2

end

The first argument is the name of the relation and the second argument is
the old of the desired tuple in the relation. In effect, this type defines a
reference to an arbitrary tuple in the database.

The procedure-type tupe can be used to create a relation that
represents people who help with fund raising.

create VOLUNTEER(Person = tuple, TimeAvailable = integer,...)

Because volunteers may be students, employees, or people who are neither
students nor employees, the attribute Person must contain a reference to a
tuple in an arbitrary relation. The following command appends all students
to VOLUNTEER:

append VOLUNTEER(Person = tuple(relation(S), S.oid))
from S in STUDENT*

The predefined function relation returns the name of the relation to which
the tuple-variable S is bound.

The type tuple will also be special-cased to make it more convenient.
Tuple will be a predefined type and it will be possible to assign tuple-
variables directly to attributes of the type. Consequently, the assignment to
Person written above as

.. Person = relation(S), S.oid ...

can be written

-. Person = S ...

We expect that as we get more experience with POSTGRES applications
that more types may be special-cased.

4. User-Defined Procedures
This section describes language constructs for adding user-defined pro-

cedures to POSTQUEL. User-defined procedures are written in a eonvn-
tonal programming language and are used to implement ADT operators or
to move a computation from a front-end application process to the back-end
DBMS process.

Moving a computation to the back-jmd opens up possibilities for the
DBMS to precompute a query that includes the computation. For example,
suppose that a front-end application needed to fetch the definition of a form

17

-r W C "," d %'- "-.'- t.' . " . ", " * "I ' ',"" 4" t' ' '- " " - "

fom a database and to construct a main-memory data structure that the
run4ime forms system used to display the form on the terminal screen for
data entry or display. A conventional relation database design would store
the frm components (e.g., titles and field definitions for diffwrent types of
fids suck as scalar fields, table fields, and graphics fields) in many
different relations. An example database design is shown in figure 4. The
query that fetches the form from the database must execute at least one
query per table and sort through the return tuples to construct the main-
memory data structure. This operation must take less than two seconds for
an interactive application. Conventional relational DBMS's cannot satisfy
this time constraint.

Our approach to solving this problem is to move the computation that
constructs the main-memory data structure to the database process. Sup-
pose the procedure ConstructForm built the data structure given the name
of a form. Using the parameterized procedure-type mechanism defined
above an attribute can be added to the FORM relation that stores the form
representation computed by this procedure. The commands

create FORM(FormName, .)

create FIELDS(FormName, FieldName, Origin, Height, Width,
FieldKind, ...)

create SCALARFIELD(FormName, FieldName, DataType,
DisplayFormat, ..)

create TABLEFIELD(FormName, FieldName, NumberOfRows, ...)
create TABLECOLUMNS(FormName, FieldName, ColumnName,

Height, Width, FieldKind, ..)

Figure 4: Database design for storing form definitions.

is
I..,.-'

'% % * - % ---- .

define type formrep b
retrieve (rep = ConstructForm($.FormName))

end
addattrbute (FormName, ... , FormDataStructure = forurep)

to FORM
define the procedure type and add an attribute to the FORM relation.

The advantage of this representation is that POSTGRES can precom.
put the answer to a procedure-type attribute and store it in the tuple. By
precomputing the main-memory data structure representation, the form can
be fetched from the database by a aingle-tuple retrieve:

retrieve (z = FORM.FormDataStructure)
where FORM.FormName = "W

The real-time constraint to fetch and display a form can be easily met if all
the program must do is a single-tuple retrieve to Zetch the data structure
and call the library procedure to display it. This example illustrates the
advantage of moving a computation (i.e., constructing a main-memory data
structure) from the application process to the DBMS process.

A procedure is defined to the system by specifying the names and types
of the arguments, the return type, the language it is written in, and where
the source and object code is stored. For example, the definition

define procedure AgelnYears(date) returns int4 is
(language = "C", filename = "AgelnYears")

defines a procedure AgdnYears that takes a date value and returns the age
of the person. The argument and return types are specified using
POSTGRES types. When the procedure is called, It is passed the arguments
in the POSTGRES internal representation for the type. We plan to allow
procedures to be written in several different languages including C and Lisp
which are the two languages being used to implement the system.

POSTGRES stores the information about a procedure in the system
catalogs and dynamically loads the object code when it is called in a query.
The following query uses the AgednYears procedure to retrieve the names
and ages of all people in the example database:

retrieve (P.Name, Age = AgelnYears(P.Birthdate))
from P In PERSON*

User-defined procedures can also take tuple-variable arguments. For
example, the following command defines a procedure, called Comp, that
takes an EMPLOYEE tuple and computes the person's compensation

19.

according to some formula that involves several attributes in the tuple (e.g.,
the employee's status, job title, and salary):

define procedure Comp(EMPLOYEE) returns int4
Is (language = "C", filename = "Compl")

Recall that a parameterized procedure-type is defined for each relation
automatically so the type EMPLOYEE represents a reference to a tuple in
the EMPLOYEE relation. This procedure is called in the following query:

retrieve (E.Name. Compensation = Comp(E))
from E in EMPLOYEE

The C function that implements this procedure is passed a data structure
that contains the names, types, and values of the attributes in the tuple.

User-defined procedures can be passed tuples in other relations that
inherit the attributes in the relation declared as the argument to the pro-
cedure. For example, the Comp procedure defined for the EMPLOYEE rela-
tion can be passed a STUDEMP tuple as in

retrieve (SE.Name, Compensation = Comp(SE))
from SE in STUDEMP

because STUDEMP inherits data attributes from EMPLOYEE.

The arguments to procedures that take relation tuples as arguments
must be passed in a self-describing data structure because the procedure can
be passed tuples from different relations. Attributes inherited from other
relations may be in different positions in the relations. Moreover, the
values passed for the same attribute name may be different types (e.g., the
definition of an inherited attribute may be overriden with a different type).
The self-describing data structure is a list of arguments, one per attribute in
the tuple to be passed, with the following structure

(AttributeName, AttributeType, AttributeValue)

The procedure code will have to search the list to find the desired attribute.
A library of routines is provided that will hide this structure from the pro-
grammer. The library will include routines to get the type and value of an
attribute given the name of the attribute. For example, the following code
fetches the value of the Birthdate attribute:

GetValueC"Birthdate7)

The problem of variable argument lists arises in all object-oriented program-
muing languages and similar solutions are used.

20

-. l

The model for procedure inheritance is nearly identical to method
inheritance in otect-oriented programming langauges [StB86]. Procedure
inheritance uses the data inheritance hierarchy and similar inheritance
rules except that a rule is provided to select a procedure when an inheri-
tance conflict 'arises. For example, suppose that a Comp procedure was
defined for STUDENT as well as for EMPLOYEE. The definition of the
second procedure might be:

define procedure Comp(STUDENT) returns int4
Is (language = C ", filename = "Comp')

A conflict arises when the query on STUDEMP above is executed because
the system does not know which Comp procedure to call (i.e., the one for
EMPLOYEE or the one for STUDENT). The procedure called is selected
from among the procedures that take a tuple from the relation specified by
the actual argument STUDEMP or any relation from which attributes in
the actual argument are inherited (e.g., PERSON, EMPLOYEE, and STU-
DENT).

Each relation has an inheritance precedence list (IPL) that is used to
resolve the conflict. The list is constructed by starting with the relation
Itself and doing a depth-first search up the inheritance hierarchy starting
with the first relation specified in the inherits-clause. For example, the
inherits-clause for STUDEMP is

.. Inherits (STUDENT, EMPLOYEE)

and its IPL is

(STUDEMP, STUDEN.T, EMPLOYEE, PERSON)

PERSON appears after EMPLOYEE rather than after STUDENT where it
would appear in a depth-first search because both STUDENT and
EMPLOYEE inherit attributes from PERSON (see figures I and 2). In
other words, all but the last occurrence of a relation in the depth.first order-
ing of the hierarchy is deleted. 3

When a procedure is called and passed a tuple as the first argument,
the actual procedure invoked is the first definition found with the same
name when the procedures that take arguments from the relations in the

I We are wing a ruh that h similar to the rulefr the sew Common LiUsp bject medal
[Boes96. It b actually slightly more eomplicated than described here in order to eliminato
same nasty msm that aris whm there are cycles in the inheritance hierarchy.

21

.. ,. -. .'

°I

IL? or the argument are searched in order. In the example above, the Comp
procedure defined for STUDENT is called because there is no procedure
named Comp defined for STUDEMP and STUDENT is the next relation in
Ube IPL ..

The implementation of this procedure selection rule is relatively easy.
Assume that two system catalogs are defined:

PROCDEF(ProcName, ArgName, Procld)
IPL(RelationName, IPLEntry, SeqNo)

where PROCDEF has an entry for each procedure defined and IPL main.
tains the precedence lists for all relations. The attributes in PROCDEF
represent the procedure name, the argument type name, and the unique
identifier for the procedure code stored in another catalog. The attributes in
IPL represent the relation, an IPL entry for the relation, and the sequence
number for that entry in the IPL of the relation. With these two catalogs,
the query to find the correct procedure for the call

Comp(STUDEMP)

js4

retrieve (PJProcld)
from P in PROCDEF, I In IPL
where P.ProcName = "Comp"
and I.RelationName = "STUDEMP"
and lIPLEntry = P.ArgName
and l.SeqNo = MIN(I.SeqNo by IRelationName, PArgName

where lIPLEntry = P.ArgName)

This query can be precomputed to speed up procedure selection.

In summary, the major changes required to support procedure inheri-
tance is 1) allow tuples as arguments to procedures, 2) define a representa-
tion for variable argument lists, and 3) implement a procedure selection
mechanism. This extension to the relational model is relatively straightfor-
ward and only requires a small number of changes to the DBMS implemen-
tation.

'Thu query amns a QUEIetyk aggregte functiom.

22

"0 J **, ..,-..-., ..- .., .,... -..

5. Comparison to Other Data Models
This section compares the POSTGRES data model to semantic, func-

tional, and object-oriented data models.
Semaptic and functional data models

tDaeB5,HaM81,Mye8O,Shi8lSmS77,Zan3.] do not provide the flexibility
provided by the model described here. They cannot easily represent data
with uncertain structure (e.g., objects with shared subobjects that have
different types).

Modeling ideas oriented toward complex objects tHaL82,LoP83] cannot
deal with objects that have a variety of shared subobjects. POSTGRES uses
procedures to represent shared subobjects which does not have limitation on
the types of subobjects that are shared. Moreover, the nested-dot notation
allows convenient access to selected subobjects, a feature not present in
these systems.

Several proposals have been made to support data models that contain
non-first normal form relations [Bae86,Dae86,Sch86]. The POSTGRES data
model can be used to support non-first normal form relations with
procedure-types. Consequently, POSTGRES seems to contain a superset of
the capabilities of these proposals.

Object-oriented data models [CoM84,Mai86] have modeling constructs
to deal with uncertain structure. For example, GemStone supports union
types which can be used to represent subobjects that have different types
[CoM84]. Sharing of subobjects is represented by storing the subobjects as
separate records and connecting them to a parent object with pointer-chains.
Precomputed procedure values will, in our opinion, make POSTGRES per-
formance competitive with pointer-chain proposals. The preformance prob-
lem with pointer-chains will be most obvious when an object is composed of
a large number of subobjects. POSTGRES will avoid this problem because
the pointer-chain is represented as a relation and the system can use all of
the query processing and storage structure techniques available in the sys-
tern to represent it. Consequently, POSTGRES uses a different approach
that supports the same modeling capabilities and an implementation that
may have better performance.

Finally, the POSTGRES data model could claim to be object-oriented,
though we prefer not to use this word because few people agree on exactly
what it means. The data model provides the same capabilities as an object-
oriented model, but it does so without discarding the relatioaal model and
without having to introduce a new confusing terminology.

23

-. ~. -|

6Summary
The POSTORES data model use the ideas of abstract data types, data

oftMp procedure, and inheritance to e"tend the relational model. These
Unea can be used to simulate a variety of semantic data modeling concepts
(eag., aggregation and generalization). In addition, the same ideas can be
use to support complex objects that have unpredicatable composition and

shared subobjects.

'4

*Pi miumMnriumrInrawIx

.1

References

(Bae86] D. Batory and etaL, "GENESIS: A Reconfigurable Database
.Management System", Tech. Rep. 86-07, Dept. of Comp. Si.,
Univ. of Texas at Austin, 1986.

[BoeS61 D. B. Bobrow and et-al., "COMMONLOOPS: Merging Lisp and
Object-Oriented Programming", Proc. 1986 ACM OOPSLA Cont.,
Portland, OR, Sep. 1986, 17-29.

[Cod70 E. F. Codd, "A Relational Model of Data for Large Shared Data
Bases", Comm. of the ACM, JUNE 1970.

(CoM84] G. Copeland and D. Maier, "Making Smalitalk a Database
System", Proc. 1984 ACM-SIGMOD Int. Conf on the Mgt. of
Data, June 1984.

(Dae86] P. Dadam and et.al., "A DBMS Prototype to Support Extended
NF2 Relations: An Integrated View on Flat Tables and
Hierarchies", Proc. ACM-SIGMOD Conf on Mgt. of Data,
Washington, DC, May 1986.

[Dae85] U. Dayal and etal., "A Knowledge-Oriented Database
Management System", Proc. Islamorada Conference on Large
Scale Knowledge Base and Reasoning Systems, Feb. 1985.

[Gae84] H. Garcia-Molina and et.al., "DataPatch: Integrating Inconsistent
Copies of a Database after a Partition", Tech. Rep. Tech. Rep.#
804, Dept. Elec. Eng. and Comp. Si., Princeton, NJ, 1984.

[Ha.81] M. Hammer and D. McLeod, "Database Description with SDM",
ACM-Trans. Database Systems, Sep. 1981.

[HaL82] R. Haskins and R. Lorie, "On Extending the Functions of a
Relational Database System", Proc. 1982 ACM-SIGMOD
Conference on Management of Data, Orlando, FL, JUNE 1982.

(HSW75] G. Held, M. R. Stonebraker and E. Wong, "INGRES - A
Relational Data Base System", Proc. AFIPS NCC, 1975, 409-416.

[KueS4] R. Kung and etal., "Heuristic Search in Database Systems", Proc.
Ist International Workshop on Expert Data Bases, Kiowah, SC,
Oct. 1984.

(LoP83] R. Lorie and W. Plouffee, "Complex Objects and Their Use in
Design Transactions", Proc. Engineering Design Applications
Stream of ACM-IEEE Data Base Week, San Jose, CA, May 1983.

25

. , ¢ , r ,, , , . , ,. ,,. .,. ,, "-'- *. , . " .' -.

[MaIM] D. Maler, "title?", Proc. Int. Wkshp on Object-Oriented Database

Systems, Asilomar, CA, Sep. 1986.
[WyeS0 J. Myloupoulis and et.aL, "A Language Facility for Designing

Database Intensive Applications", ACM-Trans. Database Systems,
JUNE 1980.

[Row86] L . Rowe, "A Shared Object Hierarchy", Proc. lat. Wkshp on
Object-Oriented Database tems Asilomar, CA , Sep. 1986.

[Sch86] H. Schek, "title.", Proc. lat. Wkshp on Object-Oriented Database
Systems, Asilomar, CA, Sep. 1986.

[Shi81] D. Shipman, "The Functional Model and the Data Language
Daplex", ACM-Trans. Database System., Mar. 1981.

[SmS77] J. Smith and D. Smith, "Database Abstractions: Aggregation and
Generalization", ACM Trans. Database Systems, JUNE 1977.

[StB86] M. Stefik and D. G. Bobrow, "Object-Oriented Programming:
Themes and Variations", The Al Magazine 6, 4 (Winter 1986),
40-62.

1Sto85] M. Stonebraker, "Triggers and Inference in Data Base Systems",
Proc. Islamorada Conference on Large Scale Knowledge Base and
Reasoning Systems, Feb. 1985.

[Sto86al M. Stonebraker, "Inclusion of New Types in Relational Data Base
Systems", Proc. Second Int. Conf. on Data Base Eng., Los
Angeles, CA, Feb. 1986.

[StoS6b] M. R. Stonebraker, "Object Management in POSTGRES Using
Procedures", Proc. Int. Wkshp on Object-Oriented Database
Systems Asilomar, CA, Sep. 1986.

IStRS6] M. R. Stonebraker and L. A. Rowe, "The Design of POSTGRES",
Proc. 1986 ACM-SIGMOD Int. Conf on the Mgt. of Data, June
1986.

[Sto87J M. Stonebraker, 'Postgres Storage System". Submitted for
publication., 1987.

[Ste] M. R. Stonebraker and et. 01, "QUEL as a Data Type", Proc.
1984 ACM.SIGMOD Conf. on the Mgt. of Data, .

[ZanS.] C. Zaniolo, "Mhe Database Language GEM", Proc. 1983 ACM-
SIGMOD Conference on Management of Data, San Jose, CA., May
1983..

.... U

